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e The total time allowed for this exam is 90 minutes.
e This test is closed notes and closed book.
e You may not use a calculator.

e In order to receive full credit, you must show your work. Be wary of doing computations in your
head. Instead, write out your computations on the exam paper.

e PLACE A BOX AROUND ’ YOUR FINAL ANSWER ‘ to each question where appropriate.

¢ If you need more room, use the backs of the pages and indicate to the reader that you have done
SO.

e Raise your hand if you have a question.

This exam is printed double-sided.
There are problems on both sides of the page!

If you need more space, you may use extra sheets of paper. If
you use extra pages:

e Put your name on each extra sheet
e Label your work with the problem you're working on

e Write on the exam problem that there is additional work
at the end

e Turn in your additional pages at the end of your exam.
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(a) Find the critical number(s) of g(z).
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(b) Find the absolute maximum and absolute minimum values of g(x) on the interval [1/2, 3].
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(10 points) A box has a square base and a height that is twice as large as the length of the base.
If the length of the base is measured to be 4 cm with an error of £1 mm ( = 1/10 cm), what is
the (absolute) error in the volume of the box? (That is, how much “extra” or “missing” volume is
there?) Show your work. . ‘o
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(14 points)  The following graph shows the ‘ DERIVATIVE ‘ k" of some function k.

The derivative &'(x)

-1-10-9 -8 =7 -6 -5 -4 -3 -2 -1 1 3 4
—1

The following questions are about the function & (z), not the graphed &/(x).

X=-7 & X=2

\

(a) Critical points of k(x):

(b) On what intervals is k increasing or decreasing?

Increasing: (- o 2 ?'3
Decreasing;: (1) M)

(c) At what values of = does k have a local maximum or minimum? If none, say so.

R

Local Maxima: z = 2 Local Minima: z = hone

(d) On what intervals is k£ concave up or concave down? Use interval notation.

Concave up: C_’ 7) —) 5 Concave down: ("' 0o) —73 v <—l ) '°°>

(e) Atwhat values of x does k have inflection points? If none, say so.

,-7) __\

Inflection points: z =
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(14 points) A television camera at ground level is filming the lift-off of a space shuttle that is
rising vertically according to the position equation

MIDTERM EXAM 2

FALL 2020

h(t) = 50t2,

where h is measured in feet and is t measured in seconds (see picture below). The camera is 5000
feet from the launch pad.

.

(a) Find the height and velocity [i.e., change in height] of the shuttle 10 seconds after lift-off.

L\(ID\= 50(\0\2: §O-100 = 5000
dh _ 1004 é—{i/
1=10

5000 ft

(b) Find the rate of change in the angle of elevation of the camera () at 10 seconds after lift-off. [In-
clude units in your answer]
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(12 points)  For each limit:

(i) Write the form of the limit AND state whether the form is indeterminate (include the type).
equal sign.

. sin(2z) + 722 (271 )¢ O/ SA(0)+ O
(@) lim —————-— = —_— Type: o
B T , o)

(ii) Find the limit. If you use a L'Ho6pital Rule, indicate it by a symbol (such as L’'H or H) over the
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E (10 points)  Consider the implicitly defined curve given by

2 -y =1+ay.

— A
ZdRERL

(a) Show that the point P = (—1, 1) is on the curve. Then draw and label the point P in the figure.

Oswse (= 1> =0 and 1+ (0= 1-1=0. Thue
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(b) Compute ' at P. ;- . ) s
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(c) Find the equation of the tangent line at P. Then draw this tangent line in the figure.
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(14 points)  Suppose an open cup in the shape of a cylinder is to be made with surface area 48
in2. What dimensions (radius and height) will maximize the volume of the cup?

[surface area = 77 + 27rh and volume = mr2h, where 7 is the radius of the cup and h is the height.]
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(16 points)  We want to sketch a graph of a function f(z) with certain specified properties.

(a) Fill in the following tables. (You can use words or pictures.)

function information what you conclude about the behavior of f
Domain of f is (—oo, 00) _(’ s th /\U/OUS%
xli}}loof(x):_Q U\ W e hoig. ASA,IM-,’- ag X—v¥-—o°
zli_>ngof(az):5 \1 =7 % bho-e. aSvlw._p QX7
£(0) =10 L parree Yhﬂﬂ“(oﬂd)
¥ o, & is defned b all read #s, bur Hhats ot n@:‘fuﬁﬁ Whot “olpmasn®
wA@HS .- -
x z<0|0|xz>0
sign/value of f'(z) + 0 -
Behavior of f(z) /\—:l Ly‘ mMA ( OPHM\

T r<—=5| 5| -H<x<3|3|xz>3
sign of " (z) + 0 - 0 +
Behavior of f(z) || \_J ‘-",‘f N 1,,?, \j oph‘bf“"a
/
; A

(b) Sketch the graph of f that has all of the properties listed in the tables (does not need to be drawn

to scale). Label/draw | on the graph | the following:

a point at any local maxima/minima, H— RG%W I

a box at any inflection points,

a dashed line for any horizontal /vertical asymptotes along with equation,

tick marks on axes to indicate important z- and y-values.
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(5 points)

Use the Mean Value Theorem to prove that a — b < sinb — sina < b — a given the interval [a, b].
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