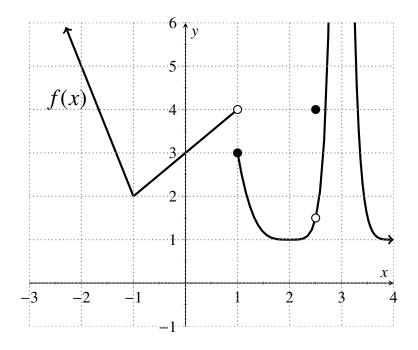
Fall 2025 Math F251X

Calculus 1: Midterm 1

Name:	Section: □ 9:15am (Kevin Meek)
	□ 11:45am (James Gossell)
	□ 11:45am (Margaret Short)
	□ asvnc (James Gossell)

Rules:


- Partial credit will be awarded, but you must show your work.
- You may have a single handwritten $3'' \times 5''$ notecard, both sides.
- Calculators are **not** allowed.
- Place a box around your FINAL ANSWER to each question where appropriate.
- Turn off anything that might go beep during the exam.

Good luck!

Problem	Possible	Score
1	16	
2	9	
3	9	
4	10	
5	8	
6	6	
7	12	
8	12	
9	18	
Extra Credit	(5)	
Total	100	

1. (16 points)

Consider the graph of the function f(x) below.

Use the graph of f(x) to answer each question below. If the limit is infinite, indicate that with ∞ or $-\infty$. If the value does not exist or is undefined, write DNE.

$$(a) \lim_{x \to 1^{-}} f(x) =$$

(b)
$$\lim_{x \to 1^+} f(x) =$$

$$(c) \lim_{x \to 1} f(x) =$$

(d)
$$\lim_{h\to 0} \frac{f(0+h) - f(0)}{h} =$$

(e)
$$\lim_{x \to 2} f'(x) =$$

$$(f) \lim_{x \to -2} f'(x) =$$

(g)
$$f(2.5) =$$

(h)
$$\lim_{x \to 2.5} f(x) =$$

$$(i) \lim_{x \to 3} f(x) =$$

(j) Indicate all x-values for which the function f(x) is **not continuous**:

(k) Indicate all x-values for which the function f(x) is **not differentiable**:

2. (9 points)

Compute the following limits. Show your work. Use limit notation where necessary; you will be graded both on your computation and on your correct use of notation.

If the limit does not exist, write **DNE** and a few words about why it does not exist. If the limit increases without bound, write ∞ or $-\infty$.

a.
$$\lim_{x \to 4^-} \frac{x^2 - 8x + 15}{x^2 - 9x + 20}$$

b.
$$\lim_{x \to 2} \frac{\frac{2}{x} - \frac{x}{2}}{x - 2}$$

$$\mathbf{c.} \lim_{\theta \to \pi/4} \frac{\sin^2 \theta}{\cos \theta}$$

3. (9 points)

Let

$$f(x) = \begin{cases} \frac{5x^2 + 2x}{x} & x < 0\\ 5 & x = 0\\ 5\sin(x) + 2\cos(x) & x > 0 \end{cases}$$

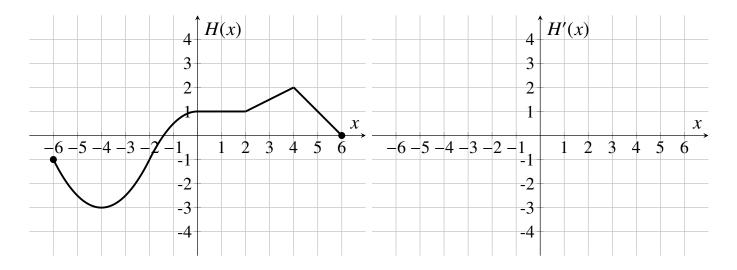
a. Evaluate $\lim_{x\to 0^-} f(x)$. Show supporting work.

b. Evaluate $\lim_{x\to 0^+} f(x)$. Show supporting work.

- **c**. Evaluate f(0).
- d. Based on your answers to parts (a), (b) and (c), check the true statement(s) below:
 - \Box f is continuous at x = 0.
 - \Box f has a removable discontinuity at x = 0.
 - \Box f has a jump discontinuity at x = 0.
 - \Box f has an infinite discontinuity at x = 0.
 - □ None of the above.

4. (10 points)

Use the limit definition of the derivative (given below) to find the derivative of


$$f(x) = \sqrt{x+3}$$

Show all your work clearly using correct notation. No credit will be awarded for a solution without adequate justification or that does not use the definition below.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

5. (8 points)

The function y = H(x) is graphed below. Sketch the graph of H'(x) on the blank set of axes provided.

6. (6 points)

S(t) is a function that describes the number of survivors in UAF's annual Humans vs. Zombies game, t days after the start of the game.

- **a.** Interpret the meaning of S(2) = 235 in the context of the problem. Write a sentence or two including appropriate units.
- **b**. Interpret the meaning of S'(2) = -53 in the context of the problem. Write a sentence or two including appropriate units.

c. Using parts (a) and (b), **estimate** S(3) including units. Write a sentence explaining how you arrived at your estimation.

7. (12 points)

Compute the **derivative** of each of the following functions using any method you like. **You do not need to simplify your answers.**

a.
$$g(x) = x^{3.4} - \frac{2}{3x^2} + \sqrt{x} - \sin\left(\frac{\pi}{2}\right)$$

b.
$$f(x) = \cos(x) \left(4x^5 - 3x^2 \right)$$

c.
$$h(\theta) = \frac{\sin(\theta)}{\theta}$$

$$\mathbf{d.} \ \ s(x) = x^2(\sin x)(\cos x)$$

8. (12 points)

The function $g(x) = x^2(x - 1) + 4$ is graphed below.

- **a.** Sketch and label the graph of the **tangent line** to the graph of g(x) when x = -1.
- **b**. Write an equation for the tangent line to g(x) when x = -1.

c. Find all the *x*-values at which the graph of g(x) has a horizontal tangent line or explain why none exist. Justify your answer and show your work.

9. (18 points)

An NFL quarterback throws a football straight up from the surface of the moon. While the football is in the air, its height in meters after t seconds is h(t) = t(28 - 0.8t)

a. Find functions describing the **velocity** and **acceleration** of the football.

b. What was the **initial velocity** of the football? Include correct units in your answer.

c. After 10 seconds, is the football speeding up or slowing down? Show your work and justify your answer.

d. When does the football reach its highest point? Include correct units in your answer.

e. When does the fooball hit the ground? Include correct units in your answer.

f. What is the **acceleration due to gravity** on the surface of the moon? Include correct units in your answer.

10. (Extra Credit: 5 points)

Is it always true that $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x)}{g'(x)}$?

If so, explain why. If not, provide an example where $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] \neq \frac{f'(x)}{g'(x)}$.