Math F251

Midterm 2

Spring 2020

Name: Solutions	Section: □ F01 (Faud	ree)
	□ F02 (Buele	er)
	□ UX1 (Van	Spronsen)

All students must affirm the following statements by initialing in the blanks provided. Students using their own paper must write out the statements in full.

J	_ I will not seek or accept help from anyone.
J	I will not use a calculator, books, notes, the internet or other aids.
	I understand that answers without work will not be awarded credit.
Good luck!	

Problem	Possible	Score
1	10	
2	10	
3	10	
4	8	
5	12	
6	6	
7	12	
8	10	
9	10	
10	12	
Total	100	

1. (10 points)

A table of values for f(x), g(x), f'(x) and g'(x) is given.

х	f(x)	f'(x)	g(x)	g'(x)
1	3	1	2	8
2	4	3	2	4
3	5	2	1	6

a. If
$$h(x) = x^2 f(x) - g(x)$$
, find $h'(3)$.

$$h'(x) = x^2 f'(x) + 2xf(x) - g'(x)$$

 $h'(3) = (3)^2 \cdot 2 + 2 \cdot 3 \cdot 5 - 6 = 18 + 30 - 6 = 42$

b. If
$$h(x) = f(g(x))$$
, find $h'(1)$.

$$h'(x) = f'(g(x)) \cdot g'(x)$$

 $h'(i) = f'(g(i)) \cdot g'(i) = f'(z) \cdot 8$
 $= 3 \cdot 8 = (24)$

2. (10 points)

A particle moves on a vertical line so that its coordinate y at time t is $y = t^4 - 3t^2 + 2$, where $t \ge 0$.

What is the initial position of the particle?

when
$$t=0$$
, $y=2$

When is the particle moving downward?

$$y' = 4t^3 - 6t$$

 $y' = 2t(2t^2 - 3)$
 $y' = 0$ when $t = 0$ and $2t^2 - 3 = 0$
 $2t^2 = 3$

 $t^{z} = \frac{3}{2}$ $t = t \sqrt{3}/2$

particle is moving downward

when t is in the interval

(0, 13/2)

3. (10 points)

On March 21, the Alaska Department of Health and Social Services finds 21 Alaskans are infected with a new virus. By March 31, the number of Alaskans infected has risen to 133. Assume that the number of people infected grows at a rate proportional to the size of the infected population.

a. Write an equation that says that the number of people infected grows at a rate proportional to the size of the infected population.

$$\frac{dN}{dt} = KN$$

b. Assuming the growth rate continues, with no mitigating factors, find an expression for the number, *N*, of Alaskans infected over time *t* in days.

$$N(t) = 21e^{kt}$$
 $133 = 21e^{k(10)}$
 $\frac{133}{21} = e^{10k}$
 $\ln(133/21) = 10k$
 $\ln(133/21) = k$

4. (8 points)

Sketch a graph f with domain [1, 4] such that f has an absolute minimum but no absolute maximum.

* there are lots of options here.

5. (12 points)

A ship passes a lighthouse at 3:30pm, sailing to the east at 5 mph, while another ship sailing due south at 6 mph passes the same point half an hour later. How fast will the distance between the ships be increasing at 5:30pm?

want:
$$\frac{5mph}{x}$$
 2
 $2 \times \frac{dx}{dt} + 2y \frac{dy}{dt} = 2 \times \frac{dz}{dt}$

Want: $\frac{dz}{dt} = 5$
 $3 \times \frac{dx}{dt} + 2y \frac{dy}{dt} = 2 \times \frac{dz}{dt}$
 $3 \times \frac{dx}{dt} + 2y \frac{dy}{dt} = 2 \times \frac{dz}{dt}$
 $3 \times \frac{dx}{dt} + 2y \frac{dy}{dt} = 2 \times \frac{dz}{dt}$
 $3 \times \frac{dx}{dt} = 2 \times \frac{dx}{dt} + 2y \frac{dy}{dt}$
 $3 \times \frac{dx}{dt} = 2 \times \frac{dx}{dt} + 2y \frac{dy}{dt}$
 $3 \times \frac{dx}{dt} = 2 \times \frac{dx}{dt} + 2y \frac{dy}{dt}$
 $3 \times \frac{dx}{dt} = 2 \times \frac{dx}{dt} + 2y \frac{dy}{dt}$
 $3 \times \frac{dx}{dt} = 2 \times \frac{dx}{dt} + 2y \frac{dy}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$
 $3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt} = 3 \times \frac{dx}{dt}$

6. (6 points)

Does the graph of the function $f(x) = \frac{3 \ln x}{1 - x}$ have a vertical asymptote at x = 1? Justify your answer using an appropriate limit.

e graph of the function
$$f(x) = \frac{3 \ln x}{1 - x}$$
 have a vertical asymptote at opriate limit.

$$\lim_{X \to 1} \frac{3 \ln x}{1 - x} = \lim_{X \to 1} \frac{\frac{3}{x}}{1 - x} = -3$$
Form $\frac{9}{6}$

No, f(x) does not have a vertical asymptote at x=1 because the limit as $x\to 1$ is not $\pm\infty$.

7. (12 points)

The graph of the *derivative* f' of a continuous function f is shown.

a. Determine the critical points of f(x).

where graph =0, so
$$x = -3, 6$$

b. At what values of x, does f have a local maximum? Local minimum? Explain your answer.

c. On what intervals is f concave upward? Concave downward? Use interval notation.

where
$$f'$$
 is increasing, f is concave up, which is $(-\infty, -3) \cup (3, \infty)$

8. (10 points)

A function and its first and second derivatives are given below.

$$f(x) = x^{5/3} - 5x^{2/3},$$
 $f'(x) = \frac{5x - 10}{3x^{1/3}},$ $f''(x) = \frac{10x + 10}{9x^{4/3}}$

Find the intervals of increase and decrease, and identify the locations of any local maximum or minimum values.

f is increasing on the interval (-00,0) U(2,00)

and decreasing on the interval (0, 2) f has a local max at x=0 and a local min at x=2. Find the intervals of concavity and the x-values of any inflection points.

b.

9. (10 points)

Sketch a graph that satisfies all of the conditions: domain $f = (-\infty, \infty)$, and local min f(3) = -1, f'(3) = 0 increasing f'(x) < 0 when x < 3, f'(x) > 0 when x > 3, inflection pt f''(x) < 0 when x < 0, f''(x) > 0 when x > 0 $\lim_{x \to -\infty} f(x) = 4$ cc down horizontal concave up 2 1 asymptote -3 -2 -1-1slope of tangent -2-3

10. (12 points)

The graph of the function $f(x) = \sqrt{\frac{x}{2} + 1}$ is shown.

a. Let G(x) be the square of the distance from the origin to a point on the graph of y = f(x). Write an expression for G(x).

$$x^{2} + f(x)^{2} = G(x)$$

$$G(x) = x^{2} + \left(\sqrt{\frac{x}{2} + 1}\right)^{2}$$

$$G(x) = x^{2} + \frac{x}{2} + 1$$

b. Use the expression for G(x) to find the closest point on the graph y = f(x) to the origin.

$$G'(x) = 2x + \frac{1}{2}$$
 $G'(x) = 0$ when $x = -\frac{1}{4}$
 $G(x) = 0$ when $x = -\frac{1}{4}$
of $G(x)$ has a min at $x = -\frac{1}{4}$

$$f(-1/4) = \sqrt{-1/4} + 1 = \sqrt{7/8}$$

Closest point is $(-1/4, \sqrt{7/8})$

c. Show your result by adding a point, with coordinates, to the graph.