Example 3: Find derivatives of the following functions.

(a) 
$$f(x) = \log_{10} \sqrt{x}$$

(b) 
$$g(x) = \log_2(\cos x)$$

**Example 4:** Differentiate f and find the domain of f'.

(a) 
$$f(x) = \sqrt{5 + \ln x}$$

(b) 
$$f(x) = \frac{x}{1 - \ln(x+1)}$$

**Example 5:** Differentiate the following functions.

(a) 
$$y = \ln |x|$$
.

(b) 
$$f(x) = \ln|\sec x + \tan x|$$

It is often easier to first use the rules of logarithms to expand a logarithmic expression before taking the derivative. To do this properly you first must recognize when these rules can be applied and apply them correctly.

EVTRAS

Rules and Non-Rules for Logarithms

$$\bullet$$
  $\ln(AB) =$ 

• 
$$\ln(A/B) =$$

$$\bullet$$
  $\ln(A^r) =$ 

$$\bullet$$
  $\ln(A+B) =$ 

$$\bullet \ \ln(A-B) = \underline{\hspace{1cm}}$$

$$\bullet \ (\ln A)^r = \underline{\hspace{1cm}}$$

**Example 6:** Differentiate the following functions by first expanding the expressions using the rules for logarithms. Explain *why* this is the better way to proceed in each case.

(a) 
$$f(x) = \ln \sqrt{5x + 2}$$

(b) 
$$g(x) = \log_5(x^2\sqrt{x+1})$$

**Example 7:** Differentiate 
$$f(x) = \ln\left(\frac{x(x^2+1)^2}{\sqrt{2x^4-5}}\right)$$