SECTION 3.6: LOGARITHMIC DIFFERENTIATION

1. Find the derivative of

(@) y = 3z — 2°)*(x — tan(x))".
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(b) Find the derivative of y = (sin(x))”.
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SECTION 3.7: RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES

2. A ball is tossed straight up into the air. It has a velocity at time ¢ = 0 seconds of 5 meters per
second. It undergoes a constant acceleration due to gravity of —9.8 meters per second per second,
m/s%. The height of the ball can be written in the form

2
ht)y=at+0t* = K} -L}q‘é

where h is measured in meters, time is measured in seconds, and a and b are certain constants.

(a) Determine the values for the constants.

W)= a +2bt h'¢E) = 2b = -9.3, 80 b=-4.9 v
v:h')=a=5 "

(b) What is the height of the ball at time t = 0? At¢ = 1?

hiloYz0m h(D= 5-49=0.| m

(c) At what times is the ball at height 0?
2
0= 5t-4at’=¢ (5-490
tz0% or 1 = 6/qq /.02 3ec

(d) What is the average velocity of the ball over the time interval [0.2,0.21]?

hOR-b0D . 7 591 s

" oal-01
(e) What is the average Veiocity of the ball over the time interval [0.2,0.201]?
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(f) What is the instantaneous velocity of the ball at time ¢ = 0.2??

W= 6- 93t h(0.2)= 5-98(02)= 3.04 m/s

(g) At what time ¢ is the ball motionless?

5,
W(Dz0 = 6-93t. So & Z44 = 0.51024
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(h) What is the velocity of the ball at time ¢t = 0? At¢ = 0.1? Att =17

h () = Imfs hQ)= =48 m/s
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Eind the area insiol.
ripps ctben tyt=2.

3. A stone is thrown in a pond and a circular ripple travels outward at a speed of 60 cm/s." Determine
the rate of change of area inside the ripple at time ¢t = 1 second and at time ¢ = 2 seconds.
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4. A population of bacteria starts at 500 cells and doubles every 30 minutes. Find a function P(t) that
describes this situation. Then compute the rate of change of the bacteria population at time ¢ = 60
minutes.
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5. A population of caribou is growing, and its population is

3€t/5

P(t) = 4000 ———.
*) 1+ 2et/5

(a) What is the population at time ¢t = 0?

P(6Y= “Hovo 6 — ) 4000 (2)=4 600 caribon

(b) Determine the rate of change of the populatlon at an t e t ﬁ/)
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(c) Determine the rate of change of the population at time ¢ = 0 years.

P/C&” ‘ZZ:D =266 can‘éw/ﬁ,

(d) Determine the long term population. 'Eé' 4/00 0+ -‘3
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