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Mean Value Theorem. If f is a continuous function on an interval [a, b] that has a derivative at every
point in (a, b), then there is a point ¢ in (a, b) where

£(0) = ()
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1. Suppose f is a continuous function on [a, b] that has a derivative at every point of (a,b). Suppose
also that f(b) < f(a). What can you conclude from the Mean Value Theorem?
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2. Suppose f is a continuous function on [a, b that has a derivative at every point of (a, b), and that
f'(z) > 0 for each z in (a,b). Thinking about your answer to problem 1, what can you conclude
about f(a) and f(b)?
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3. A function is said to be increasing on an interval (a, b) if whenever = and z are in the interval and
x < z,then f(z) < f(z). It is decreasing if whenever = and z are in the interval and = < z, then
f(z) > f(z) Sketch an example of a function that is increasing on (1, 3) and decreasing on (3, 5).




Increasing/Decreasing Test
Your answer to problem 2 implies the first item below; the second is justified by a similar argument.

e If f’(x) > 0 on an interval (a, b) then f is increasing on the interval.

e If f’(x) < 0 onan interval (a,b) then f is decreasing on the interval.

4. Use the increasing/decreasing test to find intervals where
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flz) = §x3+x2—12w+7

is increasing and intervals where it is decreasing.
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5. Find the critical points of the function f(z) = §m3 + 2% — 12z + 7 from the previous problem. There
should be two, ¢; and ¢z with ¢; < ¢p. Just pay attention to c;.

(a) Just to the left of ¢; is the function increasing or decreasing? l"”“‘s""‘s
(b) Just to the right of ¢; is the function increasing or decreasing? d ci€aSin 3

(c) Now decide intuitively, based on these two observations, if f has a local min, local max, or
neither at ¢;.
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6. Repeat the previous exercise for the other critical point c;.
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You have just sketched the argument that justifies the following:
First Derivative Test
Suppose f is a function with a derivative on (a,b), and if ¢ is a point in the interval with f’(¢) = 0.

o If f’(x) > O for x just to the left of ¢ and f’(z) < 0 for z just to the right of ¢, then f has a
TH++r 0 ~——— ¢

AN

o If f(z) < O for x just to the left of ¢ and f’(x) > 0 for z just to the right of ¢, then f has a
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7. The function f(x) = xe” has exactly one critical point. Find it, and then use the First Derivative
Test to determine if a local minimum or local maximum occurs there.
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8. Consider the function f(z) = 223 + % — 12z 4 7. Find intervals such that the derivative of f(z) is
increasing or decreasing
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9. Earlier you computed that f’(—3) = 0. Is f’ increasing near © = —3 or decreasing near v = —3? because

Which of the following two scenarios must we have?
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You have just sketched out justification for the following.

Second Derivative Test
Suppose f is a function with a continuous second derivative on (a, b), and that ¢ is a point in the
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10. Use the Second Derivative Test to determine if f(z) = xze” has a local min/max at its only critical
point.
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11. Consider the function f(z) = z3. Verify that f/(0) = 0. Then decide what the Second Derivative
Test has to say, if anything, about whether a local min/max occurs at = 0.
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12. Decide what the First Derivative Test has to say, if anything, about whether a local min/max occurs

atz = 0 for f(z) = 3.
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