1. Evaluate each limit below. Show your work or explain your reasoning.

(a)
$$\lim_{x\to 8} (1+\sqrt[3]{x})(2-x^2) = (1+\sqrt[3]{8})(2-8^2) = (H2)(-62)$$

= 3(-62) = -186

(b)
$$\lim_{x\to 3} \frac{x^2 + 3x}{x^2 - x - 12} = \lim_{x\to -3} \frac{x(x+3)}{(x-4)(x+3)} = \lim_{x\to -3} \frac{x}{x-4} = \frac{-3}{-3-4} = \frac{3}{7}$$

(c)
$$\lim_{x\to 4} \frac{x^2}{x^2 - x - 12} = DNE$$
. $\lim_{x\to 4^+} \frac{x^2}{(x-4)(x+3)} = +\infty$

$$\lim_{x\to 4^-} \frac{x^2}{(x-4)(x+3)} = -\infty$$

(d)
$$\lim_{x \to -3} \frac{\frac{1}{3} + \frac{1}{x}}{x + 3} = \lim_{x \to -3} \frac{\frac{x+3}{3x}}{x + 3} = \lim_{x \to -3} \frac{1}{3x} = -\frac{1}{9}$$

(e)
$$\lim_{x\to 0} \frac{|x|}{x} = DNE$$
. $\lim_{x\to 0^+} \frac{|x|}{x} = \lim_{x\to 0^+} \frac{x}{x} = 1$. $\lim_{x\to 0^-} \frac{|x|}{x} = \lim_{x\to 0^-} \frac{-x}{x} = -1$.

(f)
$$\lim_{x\to 5^{-}} \frac{3x-15}{|5-x|} = \lim_{x\to 5^{-}} \frac{3(x-5)}{5-x} = \lim_{x\to 5^{-}} \frac{3(x-5)}{-(x-5)} = -3$$

Since x-75, 5-x70.

(g)
$$\lim_{x \to \pi} \frac{2x}{\tan^2 x} = + \infty$$

As $\times 7\pi$, $2\times 72\pi$ (positive, nonzero) and $\tan \times 70$. We know $\tan^2 x = 70$ always.

2. Give an example of a polynomial:	
3. Give an example of a rational function:	
4. Give an example of a function that is not a rational function:	
5. Is it fair to assume $\lim_{x\to a} f(x) = f(a)$? Why or why not?	
6. What if you assume $f(x)$ is a rational function?	
7. What if you assume $f(x)$ is a polynomial?	