Name: _____

- There are 12 points possible on this proficiency, one point per problem. **No partial credit** will be given.
- You have one hour to complete this proficiency.
- No aids (book, calculator, etc.) are permitted.
- You do **not** need to simplify your expressions.
- You must show sufficient work to justify your final expression. A correct answer for a nontrivial computation with no supporting work will be marked as incorrect.
- Your final answers **must start with** $f'(x) = \frac{dy}{dx} =$, or similar.
- Draw a box around your final answer.
- 1. [12 points] Compute the derivatives of the following functions.

a.
$$f(x) = \frac{1}{3x} + \sqrt{3x}$$

b.
$$f(x) = 4x - x^2 + 2\tan(x)$$

c.
$$y = \arcsin(x^3)$$

d. $f(x) = a^{\sin(x)}$ where a is a constant, a > 1

e.
$$f(x) = \sqrt{x + \ln(2x)}$$

$$f. \ f(x) = \sec\left(\frac{x}{x+1}\right)$$

g.
$$f(x) = \sqrt{1 + x^2}$$

$$\mathbf{h.} \ f(x) = \frac{e^x}{\sqrt{x}}$$

i.
$$f(x) = (\ln(x^2 + e^2))^5$$

$$\mathbf{j.} \ f(x) = \frac{x \ln(x)}{2}$$

k.
$$f(x) = e^{\pi x + 1} + \sqrt{3}\cot(\pi x)$$

I. Find
$$\frac{dy}{dx}$$
 for $2x + y = \cos(xy)$. You must solve for $\frac{dy}{dx}$.