Name:

- There are 12 points possible on this proficiency, one point per problem. **No partial credit** will be given.
- You have one hour to complete this proficiency.
- No aids (book, calculator, etc.) are permitted.
- You do **not** need to simplify your expressions.
- You must show sufficient work to justify your final expression. A correct answer for a nontrivial computation with no supporting work will be marked as incorrect.

1

- Your final answers **must start with** $f'(x) = \frac{dy}{dx} = 0$, or similar.
- Draw a box around your final answer.
- 1. [12 points] Compute the derivatives of the following functions.

a.
$$g(x) = e^{3x} \tan(x)$$

b.
$$h(x) = \csc(x^3)$$

c.
$$f(x) = \frac{5}{3x} + \frac{x^2}{\sqrt{5}} - \frac{\pi^2}{3}$$

d.
$$f(x) = x \arcsin(x)$$

e.
$$y = (x^{0.4} + 4)^{-1/5}$$

$$f. \ f(t) = \sqrt{t^2 + \cos^2(t)}$$

g.
$$g(x) = \ln(8 + \sin(x^4))$$

$$\mathbf{h.} \ f(x) = \frac{\sin(\pi x)}{x^3 + x}$$

i.
$$y = e^{(x^2)} + \sec(5x)$$

i.
$$f(x) = \sqrt{2}\cos(1 + e^{-Nx})$$

j. $f(x) = \sqrt{2}\cos(1 + e^{-Nx})$ (Assume *N* is a fixed positive constant.)

$$\mathbf{k.} \ \ j(x) = \frac{x \ln(x) - \sqrt{x}}{x^2}$$

I. Find
$$\frac{dy}{dx}$$
 for $1 + xy = x^3 + y^2$