Name: _____

- There are 12 points possible on this proficiency, one point per problem. **No partial credit** will be given.
- You have one hour to complete this proficiency.
- No aids (book, calculator, etc.) are permitted.
- You do **not** need to simplify your expressions.
- You must show sufficient work to justify your final expression. A correct answer for a nontrivial computation with no supporting work will be marked as incorrect.
- Your final answers **must start with** $f'(x) = \frac{dy}{dx} =$, or similar.
- Draw a box around your final answer.
- 1. [12 points] Compute the derivatives of the following functions.

a.
$$f(t) = e^t(3 - t^4)$$

b.
$$r(\theta) = \tan\left(\sqrt{3} + \theta^2\right)$$

c.
$$g(z) = (3z-4)(z^2+7)$$

d.
$$f(x) = 3\cos(x) + x\sqrt{x+1}$$

e.
$$f(r) = \frac{r^3 + \sqrt{r} - 2}{r}$$

$$f. G(x) = \left(\frac{x - \ln(4)}{2}\right)^3$$

$$g. f(y) = e + \cos(y^{\pi})$$

h.
$$f(x) = \frac{2\sec(bx)}{3x^3}$$
 (where *b* is a constant)

i.
$$y = x^{1/4}e^{-\sin(x)}$$

j.
$$y(t) = \ln(2t + \sin(t^2))$$

k.
$$g(x) = \arctan(e^x)$$

I. Compute $\frac{dy}{dx}$ if $\ln y - 5x = x^2y$. You must solve for $\frac{dy}{dx}$.