Name: _____

_____ / 25

Please circle your instructor's name:

Kevin Meek

James Gossell

Margaret Short

There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. **Show all work for full credit.**

1. [12 points] Consider the graph of the function f(x) below.

Use the graph of f(x) to answer each question below. If the limit is infinite, indicate that with ∞ or $-\infty$. If the value does not exist or is undefined, write DNE.

$$(a) \lim_{x \to 0^-} f(x) =$$

(b)
$$\lim_{x \to 0^+} f(x) =$$

$$(c) \lim_{x \to 0} f(x) =$$

$$(d) \lim_{x \to 2^{-}} f(x) =$$

$$(e) \lim_{x \to 2^+} f(x) =$$

$$(f)\lim_{x\to 2} f(x) =$$

(g)
$$f(0) =$$

(h)
$$f(1) =$$

(i)
$$f(2) =$$

(h) Indicate all x-values for which the function f(x) is **not continuous**:

2. [9 points] Evaluate the following limits. (It is possible that a limit is infinite or doesn't exist.) Justify your answers. Be sure to use correct notation for limits in order to receive full credit.

1.
$$\lim_{x \to -1} x^2 - 3x + \frac{1}{x}$$

2.
$$\lim_{h \to 2} \frac{h^2 - h - 2}{3h^2 - 9h + 6}$$

3.
$$\lim_{\theta \to 0} \frac{\sin^2(\theta)}{\theta \cos(\theta)}$$

(Hint:
$$\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1.$$
)

3. [4 points] Determine whether or not the given function is continuous at x = 1. Justify your answer using proper limit notation.

$$f(x) = \begin{cases} x^2 - 2x + 3 & \text{if } x < 1\\ \frac{5x - 29}{2x - 10} & \text{if } x \ge 1 \end{cases}$$

4. [2 points] BONUS: Does the equation $x + 2x^2 = 8\sqrt{x}$ have a solution for some x in the interval [1,9]? Justify your answer. (Hint: Consider the function $f(x) = x + 2x^2 - 8\sqrt{x}$.)