Circle one: Faudree (F01) | Bueler (F02) | VanSpronsen (UX1)

25 points possible. No aids (book, calculator, etc.) are permitted. You need not simplify, but show all work and use proper notation for full credit.

1. [15 points] Differentiate the following. Use proper notation to indicate your answer.

a. 
$$f(x) = (2x-5)^2(x^2+4)^3$$
  
 $f'(x) = 2(2x-5)(2)(x^2+4)^3 + (2x-5)^2(3)(x^2+4)^2(2x)$   
 $= 2(2x-5)(x^2+4)^2 [2(x^2+4) + 3x(2x-5)]$   
 $f'(x) = 2(2x-5)(x^2+4)^2 [8x^2-15x+8]$ 

b. 
$$g(x) = 10^{2 \tan x}$$
  
 $g'(x) = 10^{2 + \tan x}$ . In (10) · 2sec<sup>2</sup> x

c. 
$$f(x) = x^3 e^{-1/x}$$
  
 $f'(x) = 3x^2 e^{-1/x} + x^3 e^{-1/x} (\frac{1}{x^2})$   
 $f'(x) = 3x^2 e^{-1/x} + x e^{-1/x}$ 

d. 
$$h(t) = \frac{\cos(x)}{1 - x^2}$$
 
$$h'(x) = \frac{(1 - x^2)(-\sin x) - \cos x (-2x)}{(1 - x^2)^2}$$

$$h'(x) = (x^2 - 1)(\sin x) + 2x \cos x$$

$$(1 - x^2)^2$$

e. 
$$f(t) = \sqrt{3t - \sin^2 t}$$
  $f'(t) = \frac{1}{2} (3t - \sin^2 t)^{-1/2} (3 - 2\sin t \cos t)$   $f'(t) = \frac{3 - 2\sin t \cos t}{2\sqrt{3t - \sin^2 t}}$ 

- 2. [6 points] The amount of water in a tank t minutes after it has started to drain is given by  $W = 10(t - 15)^2$  gal. Be sure to include proper units in your answers.
  - **a**. How many gallons of water are in the tank at time t = 0?

$$W(0) = 10(0-15)^2 = 10(15)^2 = 10(225) = [2250gal]$$

b. At what rate is the water running out at the end of 5 minutes?

$$W'(t) = 20(t-15)$$
  
 $W'(5) = 20(5-15) = 20(-10) = \left[-200 \text{ gal/min}\right]$ 

c. What is the average rate at which the water flows out during the first 5 minutes?

we average rate at which the water flows out during the first 5 minutes?
$$\frac{W(5) - W(0)}{5 - 0} = \frac{10(5-15)^2 - 2250}{5} = \frac{-1250}{5}$$

$$= \frac{-250 \text{ gal/min}}{5}$$

 $y = \frac{8}{4 + \tan x}$  at the point where 3. [4 points] Find an equation of the tangent line to the curve  $x = \pi/4$ .

$$y' = -8 (4 + \tan x)^{-2} \cdot \sec^{2} x$$

$$y'(\pi/4) = -8 (4 + \tan \pi/4)^{-2} \cdot \sec^{2}(\pi/4)$$

$$= -8 (5)^{-2} \cdot (\frac{2}{72})^{2}$$

$$= -\frac{8}{25} \cdot \frac{4}{2} = -\frac{16}{25}$$

$$y(\pi/4) = \frac{8}{4+1} = \frac{8}{5}$$

$$y'' = \frac{8}{4+1} = \frac{8}{5}$$

$$y'' = \frac{8}{4+1} = \frac{8}{5}$$

$$y'' = \frac{8}{4+1} = \frac{8}{5}$$