
Math 252: Quiz 8 29 October 2025

Name: / 25

30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper
notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. (8 points) Use the (direct) comparison test to determine whether the series converge or di-
verge. You must include a detailed implementation of the test. You must (i) identify the
comparison series, (ii) indicate whether the comparing series converges or diverges and why,
(iii) demonstrate a correct inequality, and (iv) draw a conclusion.
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2. (9 points) Use the limit comparison test to determine whether the series converge or diverge.
You must include a detailed implementation of the test. You must (i) identify the compar-
ison series, (ii) indicate whether the comparing series converges or diverges and why, (iii)
demonstrate a correct inequality, and (iv) draw a conclusion.
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3. (8 points) Determine if the series below are absolutely convergent, conditionally convergent
or divergent. You must include a justification. You must (i) state the test (or tests) you are
applying, (ii) apply the test (or tests), and (iii) draw a conclusion.
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