SECTION 5.2: SERIES (DAY 1)

Things to know by the end of this section

- a. how to use sigma notation with facility
- b. the meaning of a *series*, especially as compared to a *sequence* (from §5.1)
- c. the meaning of *a sequence of partial sums of a series* and how to find it.
 - 1. An infinite series is

2. The sequence of partial sums of a series is

3. A starter example

d. what it means to say a series converges.

e. what a *geometric series* is and how to determine whether or not it converges.

f. what a *telescoping series* is and how to determine whether or not it converges.

§5.2

1

- 4. For each series below,
 - i. expand the sigma notation,
 - ii. write the first 5 terms in the series,
 - iii. write the first 5 terms in the *sequence of partial sums*, S_1, S_2, S_3, S_4, S_5 . (Use a calculating device to get a decimal or fraction representation of the partial sums.)

(a)
$$\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

2 §5.2

$$(c) \sum_{n=1}^{\infty} \frac{(-1)^n}{5}$$

$$(d) \sum_{n=1}^{\infty} \frac{n}{n^2 + 2}$$

- 5. **Definition:** Given the series
- , its sequence of partial sums is
- The series converges if
- The series diverges if
- 6. Revisit the series in #4. Which ones do you think converge? Diverge? How sure are you about your conclusions?