- (1) Suppose you are given a curve defined as x(t) and y(t):
 - (a) $\frac{dy}{dx}$
 - (b) $\frac{d^2y}{dx^2}$
- (2) Given the parametric equations $x(t) = t^3 + 1$, $y(t) = 2t t^2$
 - (a) Find dy/dx and determine its value at t = -1, 0, and 1.

- (b) Write the equation of the tangent line to the curve at t=1.
- (c) Find d^2y/dx^2 .

- (d) Is the curve concave up or concave down at t = 1?
- (e) Use technology to graph the curve and see if your answers above are plausible.

- (3) Suppose you are given a curve defined as x(t) and y(t) the area under curve can be calculated as:
- (4) Given the parametric equations $x(t) = t^3 + 1$, $y(t) = 2t t^2$, determine the interval of t-values for which the curve above the x-axis. For this interval, find the area below the curve and above the x-axis.

- (5) Suppose you are given a curve defined as x(t) and y(t) the arc length of curve can be calculated as
- (6) Determine the arc length of the cycloid $x(\theta) = \theta \sin(\theta)$ and $y(\theta) = 1 \cos(\theta)$ from t = 0 to $t = 2\pi$.