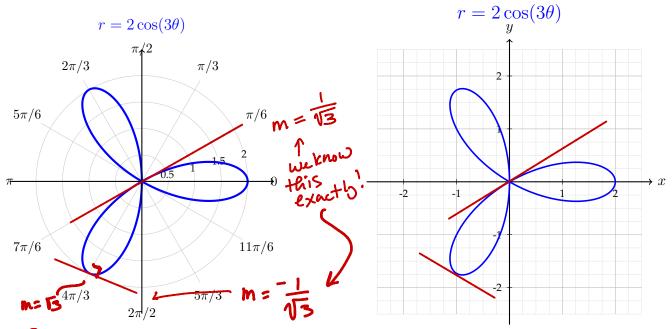
Section 7.4: Slope and ARC Length in Polar Coordinates (Extra) Recall the polar curve $r = f(\theta) = 2\cos(3\theta)$, graphed below.



- On the graphs above, sketch a tangent line at $\theta = \pi/6$ and another one at $\theta = \pi/3$. Next to your tangent lines, estimate the slope.
- (2) Find $f'(\theta)$ and evaluate it at $\theta = \pi/6$ and $\theta = \pi/3$. Does this fit with your estimates above?

If
$$f(\theta) = 2\cos 3\theta$$
, then $f'(\theta) = 6\sin(3\theta)$ a No. What is going ch?
Here we calculated how r
 $f'(\overline{A}) = 6\sin(\overline{A}) = 6$, $f'(\overline{A}) = 6\sin(\pi) = 0$ then we calculated how r
changes with respect to Θ ,
NOT how y changes with respect
to x ?

(3) Review for the Final Exam If we have a parametrized curve x(t), y(t), how do we find dy/dx?

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$
 (But $y = r \sin \theta = f(\theta) \sin \theta$) $x = r \cos \theta = f(\theta) \cos \theta$.

(4) Use this to find dy/dx for the polar curve and evaluate this at $\theta = \pi/6$ and $\theta = \pi/3$.

$$\frac{dy}{dx} = \frac{f'(\theta) \sin(\theta) + f(\theta) \cos \theta}{f'(\theta) \cos \theta - f(\theta) \sin(\theta)} = \frac{-6 \sin(3\theta) \sin(\theta) + 2\cos(3\theta) \cos(\theta)}{-6 \sin(3\theta) \cos(\theta) - 2\cos(3\theta) \sin(\theta)}$$

$$\frac{dy}{dx}\Big|_{\frac{\pi}{3}} = \frac{0 + 2 \cdot (-1)(\frac{1}{2})}{0 - 2 \cdot (-1)(\frac{12}{2})} = \frac{-1}{\sqrt{3}}$$

- (5) Review for the Final Exam
- (6) If we have a parametrized curve x(t), y(t), how do we find its arc length from $t = \alpha$ to $t = \beta$?

$$L = \int_{a}^{\beta} \sqrt{\frac{dy}{dt}^{2} + \frac{dx}{dt}^{2}} dt$$

$$= \int_{a}^{\beta} \sqrt{r^{2} + \frac{dr}{dt}^{2}} dt$$

(7) Use this formula to set up an integral to find the arc length in one petal of the 3-petal flower $r = f(\theta) = 2\cos(3\theta)$.

$$L = 2 \int_{0}^{\pi/6} \sqrt{[2 \cos(3\theta)]^{2} + [-6 \sin(3\theta)]^{2}} d\theta$$