
MATH F113X: Kruskal’s Algorithm

Goals:

• Understand the terms: tree, spanning tree, minimum cost spanning tree

• Understand how to use Kruskal’s Algorithm to find a minimum cost spanning tree

• Know of applications of minimum cost spanning trees

1. Definitions

(a) (tree)

(b) (spanning tree)

(c) (minimum cost spanning tree)

2. Example:
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3. Kruskal’s Algorithm

input: a graph, G, with costs (or weights) on the edges

output: a spanning tree, T , of minimum cost

Steps:

(a) (Initialization Step:) T is a graph on the vertex set of G but with no edges.

(b) (Iterative Step:)

i. Select the cheapest unused edge in the graph. (Ties are broken alphabetically.)

ii. If the edge does not create a cycle, add the edge to T . Otherwise, reject the edge.

iii. Mark the edge as used.

iv. If T is a spanning tree, terminate the algorithm. Otherwise return to the beginning

of the iterative step.

4. Use Kruskal’s Algorithm to find the minimum cost spanning tree for the graph G below.
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5. Think of an application of Dijkstra’s Algorithm.
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