MATH F113X: Kruskal’s Algorithm
Goals:

* Understand the terms: tree, spanning tree, minimum cost spanning tree
* Understand how to use Kruskal’s Algorithm to find a minimum cost spanning tree
* Know of applications of minimum cost spanning trees
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3. |Kruskal’s Algorithm ‘

input: a graph, G, with costs (or weights) on the edges
output: a spanning tree, 7', of minimum cost
Steps:

(a) (Initialization Step:) T is a graph on the vertex set of G but with no edges.
(b) (Iterative Step:)
i. Select the cheapest unused edge in the graph. (Ties are broken alphabetically.)
i1. If the edge does not create a cycle, add the edge to T. Otherwise, reject the edge.
iii. Mark the edge as used.

iv. If T is a spanning tree, terminate the algorithm. Otherwise return to the beginning
of the iterative step.

4. Use Kruskal’s Algorithm to find the minimum cost spanning tree for the graph G below.

Fotal wet 31’\% 20

Used? | edges weights
(3 v o b } —
xC +
ad 6
e S )
(1) v be Y v
bd b
@ v ba | 6
¢d 5
Vv ce, 2
@) v de [ 2+
Krnskal's

5. Think of an application of Piestra’s Algorithm.
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