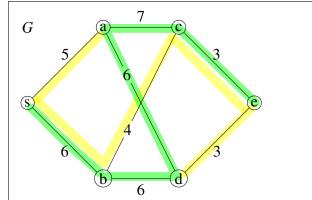

Goals:

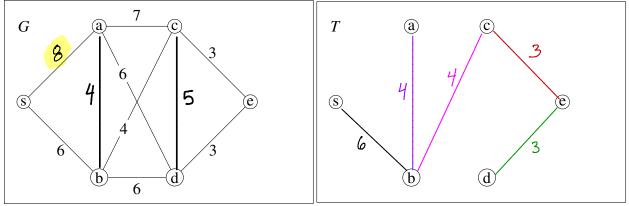
- Understand the terms: tree, spanning tree, minimum cost spanning tree
- Understand how to use Kruskal's Algorithm to find a minimum cost spanning tree
- Know of applications of minimum cost spanning trees
- 1. Definitions



1

6+6+6+7+3 = 28 6

Tz has total cost:


6+1+4+3+3=21 6

3. Kruskal's Algorithm

input: a graph, *G*, with costs (or weights) on the edges **output:** a spanning tree, *T*, of minimum cost **Steps:**

- (a) (Initialization Step:) T is a graph on the vertex set of G but with no edges.
- (b) (Iterative Step:)
 - i. Select the cheapest unused edge in the graph. (Ties are broken alphabetically.)
 - ii. If the edge does **not** create a cycle, add the edge to T. Otherwise, reject the edge.
 - iii. Mark the edge as used.
 - iv. If T is a spanning tree, terminate the algorithm. Otherwise return to the beginning of the iterative step.
- 4. Use Kruskal's Algorithm to find the minimum cost spanning tree for the graph G below.

total weight 20

Used?	edges		weights
3 1		ab	4 -
		ac	7
\bigcirc \checkmark		ad	6 reject
		as	<u>s</u>
(4) 🗸		bc	4 -
$\overbrace{1}^{(1)}$ V		bd	6 reject
(3) 🗸		bs	6
5 V		cd	5 réject
0 <		Ce	3 1
$(\tilde{\boldsymbol{v}})$ \checkmark $ $		de	3 /

Krnskal's 5. Think of an application of Dijkstra's Algorithm. Cheapest way to connect towns or computers.