Worksheet 13 (Graph Theory 5): Eulerization

Group Names:

- 1. Consider the following graph.
 - (a) How many vertices of odd degree does this graph have? $-\frac{4}{2}$
 - (b) Eulerize this graph: find the smallest number of edges you can add so that you can construct an **Euler circuit**.
 - (c) Draw the circuit on the graph.

2. Consider the following graph.

(a) Which are the vertices of odd degree? V_{02} V_{12} V_{01} V_{10} V_{30} V_{41}

(b) Eulerize this graph: find the smallest number of edges you can add so that you can construct an **Euler circuit**, and add them to the graph.

(c) Draw the circuit on the graph.

3. Consider the following weighted graph.

(a) There are two vertices of odd degree in this graph, V_{00} and V_{32} . Use Dijkstra's algorithm to find a path of minimum distance between the two vertices. Break ties by using the vertex whose subscript is smaller (for example, V_{01} is smaller than V_{23} because 01 = 1 < 23.)

vertex	100	Voi	Voz	V_{10}	∇_{Π}	V_{12}	V20	V_{21}	V22	V_{30}	V_{31}	V32
explored?	\checkmark	V	V	V	V	\checkmark	V	\checkmark	V	V	V	
tentative weight	0	2	5	1	64	6	3	5	7	6	8	109

(b) Duplicate your minimum distance path (including the weights) to eulerize the graph. (c) Then find an Euler circuit in the graph. of minimum weight.

